Applications of Photo-DSC and Photo-DMA to Optically Cured Materials

W. Chonkaew, P. Dehkordi, J. Lang, K. Menard, and N. Menard
The Project goals:

- Attempt to understand the effects of curing on sample shape
- Look at changes in geometry of a sample after curing
- Modern instrumentation allows:
 - Curing of photo-initiated samples in DSC and DMA
 - Measurement of residual cure by DSC
 - Measurement of even highly cured samples by HyperDSC
 - Tracking of sample distortion during cure in DMA
Photo-initiated Systems

- Commonly used
 - Dental materials
 - Electronic adhesives
 - Orthopedic applications
 - Coating for low VOC
- Traditionally Studied by Photo-DSC
 - Allows measure of energy of cure
 - Study of cure kinetics
 - Development of cure profiles
Onset = 1.126 min
Light on at 1 minute
Onset = 1.126 - 1.00 = 0.126 minutes

Area = -613.361 mJ
Delta H = -338.8733 J/g

Peak = 1.649 min
Sample rerun under conditions that are known to get complete cure.

Percent cure calculated:

- $\Delta H_{\text{complete cure}} - \Delta H_{\text{second cure}}$
- Divided by $\Delta H_{\text{complete cure}}$
- Times 100
- \[\left\{ \frac{(-339) - (-37)}{-339} \right\} \times 100 \]
- = 89.1 %
Advantages of UV-DMA

- Measurement of modulus and viscosity as function of cure
- Physical measurements more meaningful for actual production
- Ease of determining gelation and vitrification
- Distortion of the specimen during can be tracked
- Samples can be prepared so DSC can be used afterward to estimate percent of cure
Light on at 5.0 minutes
Experimental concerns

- UV light generates heat. Cooling is a must so that temperature remains fairly constant in run
 - True for both DSC and DMA
 - Advantage of power compensation DSC is it controls temperature and measures energy.
- Light Intensity must be measured in both systems.
 - DSC energy can be measured using graphite targets.
Calculations

Curing:
- Gelation: $E' = E''$
- Virtification – where E' levels off
- Slope of cure used to estimate kinetics
 - See Roller et al for details

![Diagram showing dynamic properties vs time with labels for E', E'', T_{gel}, and T_{vif}]
Light Sources

- Hg Lamp
- LEDs
LED System from Digital Light Labs allows programming of cure cycles
Curing and Sample Distortion

- Associated with curing is a shrinkage in the material
- Often exploited in bulk polymerizations by dilatometry to obtain initial rates.
- Shrinkage cause problems in manufacture:
 - Distortion of shapes
 - Gaps and spaces inside parts
 - Bending and twisting
- Known problem in thermal cures
- Also exists in photocures

![Diagram](image-url)
Curing and Sample Distortion

- Samples contract on curing

UV Cure in TMA

- Compression on sample due to settling
- Light on at 30 seconds
- Shrinkage caused by curing

Static Displacement vs Time

- ΔY = 0.028 mm
- Light on at 5 minutes
First Set of Experiments

- A factorial design to look at amount of cure and degree of distortion as a function of light intensity, exposure time, and temperature.

Then develop a cure profile to minimize distort for reasonable curing times.

Finally

- Development of the equivalent of a TTT diagram for time-intensity-transformation relationship.
Crunching the numbers:

- Temperature has minimal affect over the range studied.
- Intensity of the light has the greatest.
- The cure continues after the light is turned off.
- Higher intensities are needed for fuller cures.

<table>
<thead>
<tr>
<th>Temperature C</th>
<th>Intensity (w/cm2)</th>
<th>Time min</th>
<th>T gel</th>
<th>T vif</th>
<th>Delta Y</th>
<th>Percent Cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>110</td>
<td>30</td>
<td>0.1</td>
<td>11</td>
<td>0.019</td>
<td>95.4</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>30</td>
<td>0.1</td>
<td>10</td>
<td>0.016</td>
<td>96.3</td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>30</td>
<td>0.4</td>
<td>14</td>
<td>0.003</td>
<td>89.1</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>30</td>
<td>0.4</td>
<td>13</td>
<td>0.004</td>
<td>90.3</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>10</td>
<td>0.4</td>
<td>13</td>
<td>0.004</td>
<td>90.8</td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>10</td>
<td>0.5</td>
<td>15</td>
<td>0.003</td>
<td>90.1</td>
</tr>
<tr>
<td>25</td>
<td>110</td>
<td>10</td>
<td>0.1</td>
<td>15</td>
<td>0.013</td>
<td>96.7</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>10</td>
<td>0.1</td>
<td>10</td>
<td>0.015</td>
<td>97</td>
</tr>
<tr>
<td>37.5</td>
<td>75</td>
<td>20</td>
<td>0.3</td>
<td>12</td>
<td>0.006</td>
<td>94.6</td>
</tr>
</tbody>
</table>
Two stage curing by UC

- 15 minutes of UV at low intensity to create gel-glass
- 5 minutes of high intensity UV to finish the cure
- Work is ongoing with a new experimental design for this.
- After a method is developed in the DMA, test specimens will be run.
Mapping curing behavior

- Run a series of isothermal cures at a single intensity.
- Measure the time needed to T_{gel} and T_{vit}
- Graph data as done for Gilham-Enns Diagram
Results as a Time-Intensity-Transition Diagram

Time - Intensity - Transformation @ 25 C

Gelation Time
Vitrification Time
The chemistry of curing may not match perfectly with the rheology.

Tracking conversion as the change in absorbance at 6165 cm$^{-1}$ is also used.
Chemical cure versus rheological

BisGMA TEGDMA

Contacts and Acknowledgements:

Prof. W. Brostow, Matls. Sci. Eng., U. North Texas, Denton, TX
Prof. W. Chonkaew, Department of Chemistry,
 King Mongkut’s Technical University, Bangkok, Thailand
P. Dehkordi, Digital Light Labs, Knoxville, Tennessee.
Dr. J. Lang, PerkinElmer LAS, Atlanta, Georgia
Dr. K. Menard, PerkinElmer LAS, Shelton, Connecticut
 and Matls. Sci. Eng., U. North Texas, Denton, TX
N. Menard, LAPOM, Matls Sci Eng., U. North Texas, Denton, TX

Special thanks to:
Littman Dental Laboratories for supplying material samples